Evaluation of alternative weed management systems in a modified no-tillage corn–soybean–winter wheat rotation: weed densities, crop yield, and economics

Weed Science ◽  
2002 ◽  
Vol 50 (4) ◽  
pp. 504-511 ◽  
Author(s):  
Clarence J. Swanton ◽  
Anil Shrestha ◽  
David R. Clements ◽  
Barbara D. Booth ◽  
Kevin Chandler
Weed Science ◽  
2009 ◽  
Vol 57 (4) ◽  
pp. 417-426 ◽  
Author(s):  
Vince M. Davis ◽  
Kevin D. Gibson ◽  
Thomas T. Bauman ◽  
Stephen C. Weller ◽  
William G. Johnson

Horseweed is an increasingly common and problematic weed in no-till soybean production in the eastern cornbelt due to the frequent occurrence of biotypes resistant to glyphosate. The objective of this study was to determine the influence of crop rotation, winter wheat cover crops (WWCC), residual non-glyphosate herbicides, and preplant application timing on the population dynamics of glyphosate-resistant (GR) horseweed and crop yield. A field study was conducted from 2003 to 2007 in a no-till field located at a site that contained a moderate infestation of GR horseweed (approximately 1 plant m−2). The experiment was a split-plot design with crop rotation (soybean–corn or soybean–soybean) as main plots and management systems as subplots. Management systems were evaluated by quantifying in-field horseweed plant density, seedbank density, and crop yield. Horseweed densities were collected at the time of postemergence applications, 1 mo after postemergence (MAP) applications, and at the time of crop harvest or 4 MAP. Viable seedbank densities were also evaluated from soil samples collected in the fall following seed rain. Soybean–corn crop rotation reduced in-field and seedbank horseweed densities vs. continuous soybean in the third and fourth yr of this experiment. Preplant herbicides applied in the spring were more effective at reducing horseweed plant densities than when applied in the previous fall. Spring-applied, residual herbicide systems were the most effective at reducing season-long in-field horseweed densities and protecting crop yields since the growth habit of horseweed in this region is primarily as a summer annual. Management systems also influenced the GR and glyphosate-susceptible (GS) biotype population structure after 4 yr of management. The most dramatic shift was from the initial GR : GS ratio of 3 : 1 to a ratio of 1 : 6 after 4 yr of residual preplant herbicide use followed by non-glyphosate postemergence herbicides.


Weed Science ◽  
2007 ◽  
Vol 55 (5) ◽  
pp. 508-516 ◽  
Author(s):  
Vince M. Davis ◽  
Kevin D. Gibson ◽  
Thomas T. Bauman ◽  
Stephen C. Weller ◽  
William G. Johnson

Horseweed is an increasingly problematic weed in soybean because of the frequent occurrence of glyphosate-resistant (GR) biotypes. The objective of this study was to determine the influence of crop rotation, winter wheat cover crops (WWCC), residual nonglyphosate herbicides, and preplant herbicide application timing on the population dynamics of GR horseweed and crop yield. A field study was conducted at a site with a moderate infestation of GR horseweed (approximately 1 plant m−2) with crop rotation (soybean–corn or soybean–soybean) as main plots and management systems as subplots. Management systems were evaluated by quantifying horseweed plant density, seedbank density, and crop yield. Crop rotation did not influence in-field horseweed or seedbank densities at any data census timing. Preplant herbicides applied in the spring were more effective at reducing horseweed plant densities than when applied in the previous fall. Spring-applied, residual herbicide systems were the most effective at reducing season long horseweed densities and protecting crop yield because horseweed in this region behaves primarily as a summer annual weed. Horseweed seedbank densities declined rapidly in the soil by an average of 76% for all systems over the first 10 mo before new seed rain. Despite rapid decline in total seedbank density, seed for GR biotypes remained in the seedbank for at least 2 yr. Therefore, to reduce the presence of GR horseweed biotypes in a local no-till weed flora, integrated weed management (IWM) systems should be developed to reduce total horseweed populations based on the knowledge that seed for GR biotypes are as persistent in the seed bank as glyphosate-sensitive (GS) biotypes.


2006 ◽  
Vol 20 (3) ◽  
pp. 658-669 ◽  
Author(s):  
Frank L. Young ◽  
Mark E. Thorne ◽  
Douglas L. Young

No-till cropping is an option for growers needing to reduce soil erosion in the Palouse annual-cropped region of the Pacific Northwest, which is well suited for wheat production. A 6-yr field study was conducted to determine optimum levels of fertilizer and herbicide inputs in a no-till continuous wheat crop production system. Three levels of nitrogen (N) and two weed management levels (WML) were compared in a spring wheat (SW)–winter wheat (WW)–WW rotation through two rotation cycles. The high WML reduced weed densities about 50% compared with the low WML. In general, herbicide treatments were more effective on broadleaf weeds and may have facilitated a shift toward grass weeds. The high WML reduced grass weed biomass only at the reduced N levels, whereas the high WML reduced broadleaf weed density at all N levels. Variable environmental conditions affected wheat yield; however, yield tended to be highest where winter wheat immediately followed spring wheat. Nitrogen had little effect on weed density but increased crop yield about 13% with each increased N level. Crop yield was greater at the high versus low WML at each N level, even though weed density and biomass were reduced least between WMLs at the highest N level. The highest crop yield and net returns were obtained with the highest N and WML; however, none of the N and WML combinations were profitable.


Weed Science ◽  
1997 ◽  
Vol 45 (1) ◽  
pp. 98-101 ◽  
Author(s):  
Douglas D. Buhler ◽  
Micheal D. K. Owen

Horseweed emergence and survival were evaluated in no-tillage soybean and corn at Rosemount, MN, and Ames, IA, from the fall of 1992 through the summer of 1995. Most of the horseweed at both locations emerged in the fall. Winter survival of fall-emerged seedlings ranged from 59 to 91%. Timing and extent of horseweed emergence in spring varied by year and location. Spring emergence ranged from 5 to 32% of total emergence, with greater spring emergence at Rosemount than at Ames. Emergence occurred as late as early June at Rosemount and late May at Ames. Results indicated that horseweed may emerge well into the growing season, and spring emergence should be considered in weed management systems for no-tillage crop production.


Weed Science ◽  
1994 ◽  
Vol 42 (4) ◽  
pp. 541-547 ◽  
Author(s):  
William K. Vencill ◽  
Philip A. Banks

Field research was conducted from 1987 to 1991 to evaluate the influence of four weed management systems on weed population and species dynamics in conventional-tillage and no-tillage grain sorghum production. These weed management systems included zero, low, medium, and high input systems. The weed seedbank increased faster in zero and low input weed management systems than in the high input weed management systems because of differences in weed control. Tillage influenced weed seed densities as well. Common ragweed, common lambsquarters, horseweed, and sicklepod seed densities often were greater in no-tillage than conventional-tillage plots. Common cocklebur and large crabgrass seed densities were usually greater in conventional-tillage than no-tillage plots. Smooth pigweed seed densities were not affected by tillage. Increasing weed management inputs diminished differences between tillage systems. Smooth pigweed dominated the weed populations after 4 yr in both tillage systems even in high input systems.


Weed Science ◽  
2006 ◽  
Vol 54 (1) ◽  
pp. 47-58 ◽  
Author(s):  
Clarence J. Swanton ◽  
Barbara D. Booth ◽  
Kevin Chandler ◽  
David R. Clements ◽  
Anil Shrestha

Conservation tillage systems, such as no-tillage, are ecologically advantageous because they reduce soil erosion; however, they rely heavily on herbicide use. Our goal was to determine how weed communities of no-tillage systems are affected when the system is modified to reduce herbicide use through a combination of banded herbicides and interrow cultivation. To this end, we conducted a 9-yr study in a no-tillage corn–soybean–winter wheat rotation. All management systems had a preplant application of glyphosate, followed by either broadcast PRE herbicides (conventional no-tillage), interrow cultivation with banded PRE herbicides, or interrow cultivation alone. Aboveground weed densities were assessed each year and data were grouped into early (1991 to 1993) and late (1996 to 1998) time periods. Over time, weed communities became more distinct, showing a strong response to management and crop. In the early years, weed communities separated more in response to management than crop. In the late years, this was reversed. Weed communities in systems with interrow cultivation were more diverse than those in conventional no-tillage. The response to weed management system and crop was species specific. For example, the abundance of yellow foxtail was higher when interrow cultivation was employed, but abundance was equal in all crops. Dandelion was more abundant in conventional no-tillage of corn and soybean; however, it was equally abundant in all management systems in wheat. Seed bank species richness increased over time and was highest in systems with interrow cultivation. Herbicide use can be reduced in a modified no-tillage corn–soybean–wheat rotation by incorporating interrow cultivation, with or without banded herbicides, into the management plan. The weed community trajectory changes, and the weed community becomes more diverse. A more diverse weed community will not necessarily alter how we manage weeds.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1746
Author(s):  
Stéphane Cordeau ◽  
Auxence Baudron ◽  
Guillaume Adeux

In Europe, conservation agriculture (CA) is currently challenged by higher weed pressure, potential glyphosate ban and reduced crop yield. Based on preliminary results and a critical analysis, we provide insights on how to assess the effect of introducing different levels of tillage intensity, after a long-term CA sequence, on weed communities and crop yield. The experiment compared three types of fallow management (ploughing (CT), reduced tillage (RT), no-till with glyphosate (NT)) on four fields after 17 years of no-plough, which ended with 7 years of CA. The introduction of tillage proved to be a major driver of weed communities before weeding (density, richness and composition) in winter wheat. Weed density and species richness before weeding was greatest in RT, intermediate in CT and lowest in NT. The number of grains per ear and crop yield increased with tillage intensity (+11% for RT, +31% for CT). We provide avenues for future research through detailed methods and key references. Differences in winter wheat productivity were possibly related to enhanced soil structure and increased mineralisation of soil organic matter. Potential benefits of occasional ploughing will depend on the density and composition of the newly upwelled weed seedbank, which will need to be assessed before implementing tillage. From a multicriteria perspective, the long-term benefits associated with CA could largely exceed short-term yield increases associated with occasional tillage. Future studies will need to characterize the impact of occasional tillage operations on the long-term multiperformance of CA systems.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1495
Author(s):  
Muhammad Javaid Akhter ◽  
Bo Melander ◽  
Solvejg Kopp Mathiassen ◽  
Rodrigo Labouriau ◽  
Svend Vendelbo Nielsen ◽  
...  

Vulpia myuros has become an increasing weed problem in winter cereals in Northern Europe. However, the information about V. myuros and its behavior as an arable weed is limited. Field and greenhouse experiments were conducted in 2017/18 and 2018/19, at the Department of Agroecology in Flakkebjerg, Denmark to investigate the emergence, phenological development and growth characteristics of V. myuros in monoculture and in mixture with winter wheat, in comparison to Apera spica-venti, Alopecurus myosuroides and Lolium multiflorum. V. myuros emerged earlier than A. myosuroides and A. spica-venti but later than L. multiflorum. Significant differences in phenological development were recorded among the species. Overall phenology of V. myuros was more similar to that of L. multiflorum than to A. myosuroides and A. spica-venti. V. myuros started seed shedding earlier than A. spica-venti and L. multiflorum but later than A. myosuroides. V. myuros was more sensitive to winter wheat competition in terms of biomass production and fecundity than the other species. Using a target-neighborhood design, responses of V. myuros and A. spica-venti to the increasing density of winter wheat were quantified. At early growth stages “BBCH 26–29”, V. myuros was suppressed less than A. spica-venti by winter wheat, while opposite responses were seen at later growth stages “BBCH 39–47” and “BBCH 81–90”. No significant differences in fecundity characteristics were observed between the two species in response to increasing winter wheat density. The information on the behavior of V. myuros gathered by the current study can support the development of effective integrated weed management strategies for V. myuros.


Sign in / Sign up

Export Citation Format

Share Document